Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: 30% Versus 10% Cutoff for Immunohistochemistry

To the Editor.—We read with interest the letter to the editor by Nielsen and colleagues regarding the recently reported new guidelines for human epidermal growth factor receptor 2 (HER-2) testing in breast carcinoma as developed by the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) expert panel, and we agree that the recommendations are very important to ensure test accuracy and standardization among different laboratories.

The main issue Nielsen et al appear to have with these guidelines is that 30% of tumor cells (rather than 10%) are now required to show uniform strong membranous staining by immunohistochemistry (IHC) for HER-2 overexpression (3+/H11001) in ductal adenocarcinoma. The ASCO/CAP panel argued new guidelines for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007;131:1330.

Although we agree that the ideal 10% cutoff for HER-2 IHC may otherwise be difficult to explain to the urologist and patient after radical prostatectomy without further exploration for the presence of invasive carcinoma. In their final recommendations, however, an early repeat biopsy is recommended. In our opinion the latter would be advised, as it seems that occasionally intraductal carcinoma may not impact the Gleason grading system.

The review by Cohen et al is somewhat contradictory with regard to their recommendation of repeat biopsies in the rare instance of an isolated intraductal carcinoma identified in prostate biopsy specimens. At one point the authors suggest that this finding should immediately lead to a radical prostatectomy without further exploration for the presence of invasive carcinoma. In their final recommendations, however, an early repeat biopsy is recommended. In our opinion the latter would be advised, as it seems that occasionally intraductal carcinoma may not be associated with invasive disease. It may otherwise be difficult to explain to the urologist and patient after radical prostatectomy that major surgery was performed for noninvasive disease.

A difference in opinion seems to emerge from the point of view of Cohen et al that ductal adenocarcinoma can be superseded by the unifying
Letters to the Editor

The authors have no relevant financial interest in the products or companies described in this article.

In Reply.—Pickup and Van der Kwast propose that ductal adenocarcinoma of the prostate gland should be considered a variant of prostatic adenocarcinoma, rather than incorporated within the unifying classification of intraductal carcinomas as they believe we have suggested in our review article.1 We have carefully considered this important issue but stand by our position that any lesions with so-called ductal morphology (ie, lumenspanning neoplastic cells with papillary/trabecular, cribriform, or solid architecture) should be classified as: (1) intraductal carcinoma of the prostate (IDC-P) if surrounded by a complete or partial basal cell layer or (2) invasive adenocarcinoma if a basal cell layer is not detectable by immunostaining, assigned Gleason grade 3, 4, or 5 if comedonecrosis is present. Under our proposed system, invasive ductal adenocarcinoma, as defined by lesions with “ductal morphology” but no surrounding basal cell layer, would be simply classified as invasive adenocarcinoma, not IDC-P. Such cases may be recognized by some pathologists as a morphologic variant of prostatic adenocarcinoma, as with mucinous or clear-cell variants. However this “ductal” morphologic variant has not been associated with any prognostic implications independent of tumor Gleason grade or pathologic stage,2 and there is evidence that this term should no longer be used.3 We therefore see no reason to discuss it separately from other types of invasive prostatic adenocarcinoma. The focus of our article was on the identification, histologic reporting, and clinical implications of IDC-P, and the importance of distinguishing this lesion from high-grade prostatic intraepithelial neoplasia.

Pickup and Van der Kwast indicate that our original review article1 is contradictory with regard to our recommendations in rare cases where isolated IDC-P is detected in prostate biopsy specimens without associated invasive carcinoma. In our article we clearly explained that in such a case, we would recommend radical inter-

vention (surgery or other) if IDC-P is recognized in biopsy material that demonstrates solid or cribriform tumor masses with comedonecrosis. However, if the IDC-P involved thin trabecular morphology, which can be difficult to distinguish from micro-papillary prostatic intraepithelial neoplasia, especially on limited biopsy material, then we recommended immediate repeat biopsy. However, in the conclusions of our article, it is true that we only summarized our recommendations as immediate repeat biopsy. We neglected to specify that this recommendation was only for trabecular/papillary IDC-P, while for IDC-P with cribriform or solid central masses and comedonecrosis this is unnecessary, and progression to radical therapy is recommended.

Finally, the authors of the letter also refer to the risk of performing radical surgery and finding no invasive elements if only IDC-P is seen in the material from the initial biopsy. They further refer to a published case report,4 for which one of us (R.J.C.) was first author, in support of their argument. This case4 documents a patient presenting with pure IDC-P on repeat biopsy without invasive elements who was then subjected to a radical prostatectomy. This represents the first such published case in the literature, confirming the rarity of such an event. Yet, despite the absence of adjacent stromal invasive elements, IDC-P had already spread transmucosally to the seminal vesicle, which is consistent with its aggressive behavior. In our opinion, further repeat biopsies and the subsequent delay in definitive therapy would not have been in the interest of this patient, and likewise for any patient with IDC-P.

R. J. COHEN, MB BCH, F F PATH, FRC PA, PhD
Uropath Pty Ltd
Nedlands, Western Australia 6009, Australia
University of Western Australia
Perth, Western Australia 6009, Australia

THOMAS M. WHEELE R, MD
Department of Pathology
Baylor College of Medicine
Houston, TX 77030

Letters to the Editor

SHOULD WOMEN WITH ABNORMAL SERUM THYROID STIMULATING HORMONE UNDERGO SCREENING FOR ANEMIA?

To the Editor.—The prevalence of thyroid dysfunction is constantly increasing in Western countries, especially among women, and the aging of the population will make this trend rather unlikely to be reversed.1 Anemia is typically characterized by a deficiency of red blood cells and/or hemoglobin. For adult men, a hemoglobin level less than 130 g/L (8.07 mmol/L) is diagnostic of anemia, whereas for adult women the diagnostic threshold is commonly less than 120 g/L (7.45 mmol/L).2 Thyroid hormones have a significant influence on erythropoiesis, in that various forms of anemia (normocytic, hypochromic-microcytic, or macrocytic) have been associated with declines in thyroid function. Anemia might also be encountered in hyperthyroidism and, when present, may be morphologically similar to that observed in hypothyroidism.3 Since its now widely recognized that thyroid stimulating hormone (TSH) measurement is a sensitive test for detecting both hypothyroidism and hyperthyroidism, and this measurement is recommended as the first test for diagnosing thyroid dysfunction in ambulatory patients,4 we have evaluated the potential association between thyroid dysfunction and anemia, retrospectively analyzing the results of serum TSH and complete blood counts performed on consecutive female outpatients referred by general practitioners to our clinical laboratory for routine blood testing during the past year (June 2006 to June 2007).

Venous blood from outpatients was routinely collected in the morning on fasting subjects. Serum TSH was quantified by a third-generation assay (functional sensitivity of 0.01–0.02 mIU/L with an interassay imprecision of 20%) on the Immulite 2000 analyzer (Siemens Healthcare Diagnostics Inc, Deerfield, Ill), and the level of statistical significance was always set at P < .05. Data are presented as means and 95% confidence intervals (CIs) or percentages.

Cumulative results for hemoglobin, MCV, and serum TSH levels were retrieved for 6534 female outpatients older than 15 years (mean age, 50 years; 95% CI, 19–85 years). The mean values (95% CI) of serum TSH, hemoglobin, and MCV were 1.46 mIU/L (0.03–11.4 mIU/L), 133 g/L (99–156 g/L), and 88 fl (69–101 fl), respectively. As compared with women with TSH values within the reference range, the mean hemoglobin value was significantly lower in subjects with abnormal TSH values (either decreased or increased), while the mean MCV value was significantly lower in women with TSH less than 0.2 mIU/L, but not in those with TSH greater than or equal to 2.5 mIU/L (see Table). Although the

Baseline Characteristics, Hemoglobin, and Mean Corpuscular Volume (MCV) Values of the Study Participants (N = 6534), Grouped According to Thyroid Stimulating Hormone (TSH) Serum Levels

<table>
<thead>
<tr>
<th>TSH (mIU/L)</th>
<th>0.20–2.5</th>
<th><0.20</th>
<th>>2.5</th>
<th>P**</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1988</td>
<td>1528</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>Age, mean (95% CI), y</td>
<td>79 (90–84)</td>
<td>88 (70–100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin, mean (95% CI), g/L</td>
<td>133 (98–156)</td>
<td>131 (104–155)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCV, mean (95% CI), fl</td>
<td>89 (71–100)</td>
<td>86 (64–97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia, No. (%)</td>
<td>612 (13.8)</td>
<td>19 (15.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcytic</td>
<td>268 (6.1)</td>
<td>8 (6.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normocytic</td>
<td>294 (6.6)</td>
<td>11 (9.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrocytic</td>
<td>50 (1.1)</td>
<td>0 (0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P values versus subjects with TSH values between 0.20 and 2.50 mIU/L.

The authors have no relevant financial interest in the products or companies described in this article.
overall prevalence of anemia (hemoglobin < 120 g/L) did not significantly differ throughout the spectrum of TSH thresholds, women with TSH less than 0.2 mIU/L had an increased prevalence of normocytic anemia and a decreased prevalence of macrocytic anemia, as compared to euthyroid women.

A growing pressure is being placed on healthcare systems and clinical laboratories to improve the appropriateness of diagnostic testing, which would ultimately decrease avoidable expenditures and reduce the potential adverse consequences on patients’ health from unnecessary testing.5 Pernicious anemia is currently included within the risk factors for developing thyroid dysfunction,6 which suggests that TSH screening might be worthwhile in these patients. On the other hand, although it has been reported that thyroid dysfunction might be associated with some forms of anemia, especially in childhood, the prevalence of this association in adults varies widely.1,2,7 posing reasonable doubts as to the cost-effectiveness of screening for anemia all patients presenting with abnormal TSH values. The results of our analysis are consistent with the hypothesis that widespread screening for anemia in women with abnormal serum TSH would be unnecessary if it is not supported by a reasonable clinical suspicion.

GIUSEPPE LIPPI, MD
MARTINA MONTAGNANA, MD
GIAN LUCASALVAGNO, MD
GIAN CESARE GUIDI, MD
Sezione di Chimica Clinica
Dipartimento di Scienze
Morfologico-Biomediche
Università degli Studi di Verona
Verona, Italy

The authors have no relevant financial interest in the products or companies described in this article.

Illuminating the Invisible Specimen: Descemet Membrane Endothelial Keratoplasty

To the Editor.—With an increasing number of Descemet stripping endothelial keratoplasty (DSEK) procedures being performed, pathology laboratories can expect to receive more DSEK specimens. This letter describes 1 technique for preparing these thin, translucent specimens for sectioning.

DSEK, initially described for treatment of Fuchs endothelial corneal dystrophy and pseudophakic or aphakic bullous keratopathy, is rapidly increasing in popularity for the treatment of corneal endothelial dysfunctions.2,3 In this technique, a central, circular area of Descemet membrane is carefully loosened and stripped off the posterior corneal stroma with little or no attached stromal elements.2 This membrane may then be placed in fixative and submitted for histopathologic analysis. Specimens obtained in this manner are translucent, thin (20 ± 5 μm in 1 study), and often folded, leading to paraffin sections that show closely apposed, folded, and redundant tissue.3 Such specimens may appear invisible to the pathologist or technician in grossing, embedding, or sectioning. A folded specimen may preclude evaluation of whether the guttata, the diagnostic criterion, are central, suggesting Fuchs endothelial dystrophy, or peripheral, suggesting Hassle-Henle bodies (Figure 1).

To better visualize and process DSEK specimens, we instill 1 drop of Mercurochrome or eosin, added to DSEK specimens, we instill 1 drop of Mercurochrome. Guttata are noted, indicated by the arrows (original magnification ×50).

Figure 1. A section of folded Descemet stripping endothelial keratoplasty specimen with guttata (periodic acid–Schiff, original magnification ×400).

Figure 2. Descemet stripping endothelial keratoplasty specimen, stained orange with Mercurochrome. Guttata are noted, indicated by the arrows (original magnification ×50).

Figure 3. An unfolded section of a Descemet stripping endothelial keratoplasty specimen, embedded on cut edge. Numerous guttata are noted (periodic acid–Schiff, original magnification ×40).

GIAN LUCA SALVAGNO, MD
GIAN CESARE GUIDI, MD
MARTINA MONTAGNANA, MD
GIAN LUCASALVAGNO, MD
GIAN CESARE GUIDI, MD
Sezione di Chimica Clinica
Dipartimento di Scienze
Morfologico-Biomediche
Università degli Studi di Verona
Verona, Italy